Last Time: Orthogonal Filter Banks
Exercise: Suppose that $H_1(z) = H_0(-z)$, where H_0 is FIR. Find all PR systems.
* Haar wavelet / FB
$H_{\bullet}(z) = \frac{1}{\sqrt{2}} \left(1 + z^{-1} \right)$
$H_{l}(\mathcal{B}) = \int_{\mathcal{T}_{l}}^{l} \left(1 - \mathcal{Z}^{-l} \right)$
) at least one solution exists
Solª: Use the polyphase representation.
$ \begin{aligned} & \text{H}_{o}(3): E_{o}(2^{2}) + 2^{-1} E_{i}(2^{2}) \\ & \text{even} \\ & \text{odd} \\ & \text{polyphase} \\ \\ & \text{H}_{i}(2): H_{o}(-2) = E_{o}(2^{2}) - 2^{-1} E_{i}(2^{2}) \end{aligned} $
$ \begin{bmatrix} H_0(Z) \\ H_1(Z) \end{bmatrix}^2 = \begin{bmatrix} E_0(Z^2) & E_1(Z^2) \\ E_0(Z^2) & -E_1(Z^2) \end{bmatrix} \begin{bmatrix} I \\ Z^{-1} \end{bmatrix} $
$\underbrace{\mathbb{H}}_{\mathcal{P}}(\mathcal{P}^{1})$

 $-1 \int E_{\sigma}(2^{\gamma})$ $E_{i}(\mathcal{F}^{2}) \bigg| \mathcal{F}^{-i} \bigg|$ 2-poir DPT Analysis Bank: [V2] $\frac{1}{2^{-1}} = \frac{1}{E_{0}(2^{2})} = \frac{1}{1-1} + \frac{1}{1-1}$ [12f By the Noble identities $\frac{1}{z^{-1}} + \frac{1}{E_1(z)} + \frac{1}$ ₩p(z)

The problem has been reduced to inverting Hp(E). i.e., finding <u>Fp(8)</u>. Synthesis Banks Observe that $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\frac{1}{1}$ $\frac{1}$ Fp(Z)

 $\begin{bmatrix} F_{\sigma}(z) & F_{l}(z) \end{bmatrix} = \begin{bmatrix} z^{-1} & l \end{bmatrix} = \begin{bmatrix} z^{-1} & l$ $\frac{1}{E_{l}(z^{2})} \begin{bmatrix} 1 & -l \end{bmatrix}$ $= \left[\frac{2}{2} \right] \frac{1}{2} \left[\frac{1}{1} \right] \frac{1}{E_{\sigma}(\frac{2}{2})}$ $E_o(z^{\nu})$ $\int \frac{1}{E_{l}(2 \neq 2)}$ $\frac{1}{E_{\ell}(z^{2})}$ $=\frac{1}{2}\left[\begin{array}{c}\frac{1}{E_{i}(z^{2})} + z^{-1} \\ E_{i}(z^{2}) \\ E_{o}(z^{2})\end{array}\right]$ $\frac{1}{E_{c}(z^{2})} + \frac{1}{z^{2}} + \frac{1}{E_{o}(z^{2})}$ Remark: So far, we have not assumed anything about the fitters, D: What it we want FIR fibtes? A: Polyphase components must be delays.

 $i - l_{i} = 0$, $E_{i}(z) = 0$, $E_{i}(z) = 0$, $E_{i}(z) = 0$ The ghend FIR solution takes the form: $H_{\sigma}(2) = E_{\sigma}(2^{2}) + 2^{-1} E_{\mu}(2^{2})$ $=az^{-2l_0}$ $+bz^{-(2l_1+1)}$ $\Theta bs:$ For that wave (ets, $l_0 = 0$, $l_1 = 0$, $a = \frac{1}{R}$) $b = \frac{1}{N2}$ • For IIR solutions, the are infinite possibilities, · For cansal & stake IIR solution, Eo & E, must be min-phase, (2eros of E. & E, are inside unit circle $\implies poles of \frac{1}{E_0} & \frac{1}{E_1} & \frac{1}{E_1}$ are inside $\stackrel{i}{E_0} & \frac{1}{E_1} &$ unit circle s

Orthogonal Filter Banks $\Lambda(z) = \begin{bmatrix} 1 & 0 \\ 0 & z^{-1} \end{bmatrix}$ Last time we some that, for an orthogonal FB, $H_p(z) = \Lambda(-1) R_k \Lambda(z) R_{k-1} \Lambda(z) - \Lambda(z) R_{s}$ whee $R_{\ell} = \begin{bmatrix} \cos \theta_{\ell} & \sin \theta_{\ell} \\ -\sin \theta_{\ell} & \cos \theta_{\ell} \end{bmatrix}$ is a vot matrix. (K+1) parameters VS. (4K+2) for a geen factorization. Lattice structure reduces tre # of parameters. $R_{l} = \cos \left[\int_{-k}^{l} \frac{k}{l} \right]$ K= Sin B Cosp

Analysis Bank: $\begin{bmatrix} z^{-1} & R_0 \\ z^{-1} & R_1 \\ z^{-2} & z^{-2} \\ z^{-1} & z^{-1} \\ z^{-1} & z^{-1$ Hp (22): polyphane matrix for $\begin{array}{c} \text{Order 2K+1} & \text{H}_{\bullet} & \text{H}_{\downarrow} \\ \begin{array}{c} \Lambda_{\kappa}(z) \\ H_{\downarrow}^{\kappa}(z) \end{array} \end{array} = \begin{bmatrix} C & S \\ -S & C \end{bmatrix} \begin{bmatrix} \hat{H}_{\bullet}^{\kappa-1}(z) \\ \hat{H}_{\bullet}^{\kappa-1}(z) \\ z^{2} \hat{H}_{\downarrow}^{\kappa-1}(z) \end{bmatrix}$ order 2Ktl $= \left[\begin{array}{c} \lambda_{k}^{k-1}(z) + z^{-2} & \sum_{k}^{k-1}(z) \\ z & \sum_{k}^{k-1}(z) + z^{-2} & \sum_{k}^{k-1}(z) \end{array} \right]$ Obs: Give Hot (2), H, K-1 (2), & Op we can find $\mathcal{H}_{o}^{\mathcal{K}}(\mathcal{Z}) \& \mathcal{H}_{o}^{\mathcal{K}}(\mathcal{Z}),$ lover order -> higher order

Q: What a bout the neese? Given Hotz) & H, (2), can ne find $\theta_{k}, H^{k-1}(z), \xi H^{k-1}(z)?$ Obs: If we can do tris, we have shown that the structure above can implement all orthogonal filte barks, $h_{0}^{k} [2k+1] = S h_{1}^{k-1} [2k-1]$ impulse highest - order response terms of Ho (2) $h_{o}^{k} [2K] = S h_{i}^{k-1} [2K-2]$ $3h_{o}^{A}K[o] = ch_{o}^{A}K^{-1}[o]$ lovest-order $(4) h_{o}^{A} E I = C h_{o}^$ tens

Recall: For orthogonal filter banks $\hat{H}_{1}^{k-1}(z) = z^{-(2k-1)} \hat{H}_{0}^{k-1}(-z^{-1})$ • $h_1^{k-1} [2k-1] = -h_0^{k-1} [0]$ - 5 $\frac{h_{o}^{k}}{h_{o}^{k}} \sum k + 1$ ()• ho [6] 2 h Eo] C $= \sum_{k=1}^{n} \frac{h^{k} \sum_{k \in I} \frac{h^{k} \sum_{k \in I}}{h^{k} \sum_{k \in I}} \frac{h^{k} \sum_{k \in I}}{h^{k} \sum_{k \in I}}$ hok [2k+1] $= \frac{S}{C} = \frac{S}{C} = \frac{S}{C}$ h. E. 3 $\theta_{K} = \tan^{-1} \left(-\frac{\frac{\lambda_{K}}{h_{o}} \sum_{k \in I}}{\frac{\lambda_{K}}{h_{o}} \sum_{k \in I}} \right)$

• h, K-1 [2k-2] = h, K-1 [1] $= h_{o}^{A K} \Sigma 2K 3$ • h_o^{k-1} $\mathbb{D}_1 \mathbb{C}_2 = h_o^k \mathbb{D}_1 \mathbb{C}_2$ 4 $\Rightarrow \frac{\int_{0}^{n} K[2k]}{\int_{0}^{\infty} \sum_{k=1}^{\infty} \frac{\int_{0}^{k} L_{k}}{\int_{0}^{\infty} \frac{L_{k}}{\int_{0}^{\infty} \frac{L_{k}}{\int_{0}^{\infty}$ Nr Erk3 $\tan \theta_k = \frac{S}{C}$ ho Liz $\theta_{K} = \tan^{-1} \left(\begin{array}{c} h_{o}^{K} \mathbb{E}2K3 \\ \hline h_{o}^{K} \mathbb{E}13 \end{array} \right)$

Q: IS n t [2k] - h. [2K+1] ho Loz ho E13 Alternaticely, is $\frac{1}{2} h_0 \sum_{i=1}^{n} h_0 \sum_{i=1}^{n} \sum_{i=1}^{n}$ for orthogonal systems? Hint: Po(2) = Fo(2) Ho(2) Since the system is orthogonal, Fo(Z) = Z -(2K+1) Ho(Z-1) $\Rightarrow P_{\sigma}(z) = z^{-(2\kappa+i)} \#_{\sigma}(z^{-i}) \#_{\sigma}(z)$ is half-band Clarin: \$ implies

0 1 2 3 4 5 6 Note: ho = ho. $H_{\sigma}(2)$ ho [2 K] ho [2K+3] ho Co) ho Ci) ho C2] · ho[2++i] ho[2*] ho[2*-1] $2^{-(2\kappa+1)} H_{0}(2^{-1})$ --- h[1] hs [o] 2-1; ho [0] ho[2k] + ho[1] ho[2k+1] = 0 half baad Obs: This on's works because the system is orthogonal & Po is helt-band. At this point we have \$\$ which allows us to construct H_0^{+} & H_1^{+}

Exercise: $H_1(2) = H_0(-2)$. If Ho(2) is Type I linear - phase, are Fo & Fi consail & stable? M_{O} Sol-: Consul & starter Fo & Fi = EofE, are min-y-huse. Exi ho [n]: a b c d c b g eo En]: a c c q eccu7: 6 d b polyphase components of type I livear - phase System one livear - phase. liven-phase Systems <u>connot</u> be min-phase. Q: What if Ho is Type II liver-phase? Νο

<u>Ex!</u>	hornz: a b c d d c b a
	$e_0 c_n z : a c d b$ $e_1 c_n z : b d c a$
	polyphase components of Type II liven - place c
	$E_{c}(\mathcal{Z}) = \mathcal{Z}^{-L} E_{o}(\mathcal{Z}^{-1})$
	If one of them is min-place, the
	phase,